Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Progress in Chemistry ; 35(3):496-508, 2023.
Article in English | Web of Science | ID: covidwho-2328004

ABSTRACT

With the large-scale spread of COVID-19 around the world, it has caused serious damage to the health of people around the world. In addition to being transmitted by various droplets, viruses can also be transmitted by human touch of contaminated surfaces. However, as a commonly used surface antiviral method, disinfectants have the disadvantage of discontinuously inactivating viruses, which is bad for inhibiting the spread of various infectious viruses. Therefore, it is urgent to protect the surface of daily objects from virus pollution to eliminate the spread of various respiratory viruses ( such as Corona Virus Disease 2019, SARS-CoV-2). From this point of view, it is very important to design and develop effective antiviral coatings. This paper discusses the working mechanisms, performance evaluation methods, processing technologies, practical applications and research progress of nanoparticle antiviral coatings and polymer antiviral coatings for SARS-CoV-2, and also proposes some strategies to design more effective antiviral coatings from the perspective of different types of antiviral coatings. Although some of these antiviral coatings are still in the experimental stage, they still show great potential in the antiviral field.

2.
Journal of Hygienic Engineering and Design ; 42:361-369, 2023.
Article in English | Scopus | ID: covidwho-2312375

ABSTRACT

Plants, especially medicinal plants, took up the most space during the production of silver nanoparticles and have shown significant promise for use in biotechnology. So the goal of this research was to focus on a type of lung cell line, the WI-38 cell line, infected with the Corona virus. The study also included the isolation of the active compounds from the roots of the Taraxacum officinale plant, their extraction, and the study of their biological effects. Used in this study were: Taraxacum officinale extract, silver nitrate, (Dulbecco's Modified Eagle Medium (DMEM), fetal bovine serum (FBS) L-glutamine, penicillin, streptomycin, and dimethyl sulfoxide (DMSO) from Sigma Aldrich, USA), and XTT (2,3-bis(2-methoxy-4-nitro-5-sulfo phenyl)-2H-tetrazolium5-carboxamide) from RIbobio-China. WI-38 CCL75 cell lines were purchased from American Type Culture Collection (ATCC) identification. Source was the lung tissue for female-3 month gestation and the SARS-CoV-2 virus. Oils, flavonoids, glycosides, and tannins from Taraxacum officinale were extracted in the extraction device (Soxhlet) in successive stages using several solvents. Silver nanoparticles Ag NPs were synthesized using the green method from these extracts and diagnosed by X-Ray diffraction analysis XRD, Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM). Cell cultures were used to study the effect of nanoparticles on lung cells infected with the Coronavirus (SARS-CoV-2) using lung cell lines (wi-38) . The activity of these particles as antivirals was evaluated due to their antiviral activity where pure cultures of cell lines were planted on DMEM where DEME was used as a positive control and the cell line with DMEM was a negative control. For each experiment, the diameter of the inhibition area was measured in millimeters. Finally, the XTT test was used to test the extracted and the nanoparticle solution to ensure its suitability for inhibition of the virus coronavirus (SARS-COV-2). The results showed that nanoparticles have strong antiviral efficacy against the coronavirus. 50 mg/L of the Ag NPs extract was found to have the greatest inhibition. The potent bioactivity of the synthetic green silver nanoparticles derived from medicinal plants supports their biological use as an antiviral. The study also showed the effects of different concentrations of silver nanoparticle solutions on cell growth. The presence of phenolics and flavonoids was found in the alcoholic and aqueous extracts of the T. officinale roots. The mechanism of action of Ag NPs was investigated. As noted, the Ag NPs alcoholic extract outperformed the Ag NPs aqueous extract in terms of growth because of its small size. From this study, we conclude that the method of green biosynthesis of metal nanoparticles is considered safe and inexpensive, and the materials produced are not contaminated. Nanoparticles can be applied in many applications depending on their physical properties, such as the size and shape of the particle. They were also tested in vitro against coronavirus (SARS-COV-2) utilizing the cell line. Interestingly, the antiviral activities of Ag NPs alcoholic and aqueous extracts against SARS-CoV-2 were noteworthy, with IC50 values of 32.50 and 29.03, respectively. The findings might be a suitable starting point for future optimization and more sophisticated preclinical and clinical research of molecules on single components, particularly alcoholic extract, for inhibiting and lowering the activity of the Coronavirus in infected cells. © 2023, Consulting and Training Center - KEY. All rights reserved.

3.
Aggregate ; 2023.
Article in English | Web of Science | ID: covidwho-2307102

ABSTRACT

Monitoring an infectious disease early using highly sensitive and non-invasive techniques is critical for human health. Interestingly, the development of surface-enhanced Raman scattering (SERS) for biological detection ideally fits these medical requirements and is rapidly growing as a powerful diagnostic tool. SERS can enhance the Raman signal of the target molecule by more than 10(6) after the adsorption of the molecule on the plasmonic nanostructured surface. This review provides an overview of the use of gold and silver nanoparticles in SERS substrate designs, followed by the development of these SERS substrates in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection.

4.
Materials Today: Proceedings ; 2023.
Article in English | Scopus | ID: covidwho-2290777

ABSTRACT

Silver nanoparticles, thanks to their antiviral and antibacterial properties, have great potential in a variety of applications, such as drug-delivery carriers. The coating properties of silver nanoparticles (size range of 1.6 nm) with a well-known drug, Favipirair, were investigated in this study using quantum mechanical and classical atomistic molecular dynamics simulation in order to use as the drug delivery to treat COVID-19 disease. The drug molecule's optimized structure, frequencies, charge distribution, and electrostatic potential maps were simulated using density functional theory (DFT) at the B3LYP/6–311++g(d,p) level of theory. The coating of AgNP with each of these drugs was then studied using molecular dynamics simulation. The interaction affinity obtained from MD results agrees with the DFT results on drug adsorption on the Ag(1 1 1) slab. © 2023

5.
European Polymer Journal ; 191, 2023.
Article in English | Scopus | ID: covidwho-2298811

ABSTRACT

Particulate air pollution represented by PM2.5 is one of the biggest environmental challenges in the 21st century. Especially in 2020, the global outbreak of COVID-19 has brought new challenges to melt-blown filter materials, such as the attenuation of filtration efficiency with breathing, even no filtration effect for viruses as their smaller diameter, the sharp decline of filter efficiency after oily filtration cycle, and its limit in some explosive occasions. Here, using the diameter difference of polystyrene (PS), polyvinylidene fluoride (PVDF) and nylon 6(PA6) fibers, we report a multistage structure nanofiber membrane (PS/PVDF/PA6&Ag MSNMs) with high efficiency, low resistance and antibacterial effect by constructing gradient pore structure and introducing silver nanoparticles (Ag NPs), overcoming the above defects. The average filtration efficiency of PS/PVDF/PA6&Ag MSNMs for diisooctyl sebacate (DEHS) monodisperse particles from 0.2 μm to 4.9 μm was 99.88%, and the pressure drop was only 128 Pa. After repeated circulation for 100 times, the filtration efficiency and pressure drop remained stable. Above all, the antibacterial nanofiber membrane with high efficiency and low resistance has been preliminarily constructed, the future research will further focus on the performance after circulation. © 2023 Elsevier Ltd

6.
Chemosensors ; 9(3):52, 2021.
Article in English | ProQuest Central | ID: covidwho-2294877

ABSTRACT

Two inexpensive and simple methods for synthesis of carbon nanodots were applied and compared to each other, namely a hydrothermal and microwave-assisted method. The synthesized carbon nanodots were characterized using transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis), photoluminescence (PL), Fourier transform-infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The synthesized microwave carbon nanodots had smaller particle size and were thus chosen for better electrochemical performance. Therefore, they were used for our modification process. The proposed electrodes performance characteristics were evaluated according to the IUPAC guidelines, showing linear response in the concentration range 10−6–10−2, 10−7–10−2, and 10−8–10−2 M of tobramycin with a Nernstian slope of 52.60, 58.34, and 57.32 mV/decade for the bare, silver nanoparticle and carbon nanodots modified carbon paste electrodes, respectively. This developed potentiometric method was used for quantification of tobramycin in its co-formulated dosage form and spiked human plasma with good recovery percentages and without interference of the co-formulated drug loteprednol etabonate and excipients.

7.
ACS Sens ; 8(4): 1422-1430, 2023 04 28.
Article in English | MEDLINE | ID: covidwho-2303906

ABSTRACT

Here, quercetin-mediated silver nanoparticle (AgNP) formation combined with loop-mediated isothermal amplification (LAMP) was introduced to colorimetrically detect two major infectious pathogens, SARS-CoV-2 and Enterococcus faecium, using a foldable PMMA microdevice. The nitrogenous bases of LAMP amplicons can readily form a complex with Ag+ ions, and the catechol moiety in quercetin, which acted as a reducing agent, could be chelated with Ag+ ions, resulting in the easy electron transfer from the oxidant to the reductant and producing brown-colored AgNPs within 5 min. The introduced method exhibited higher sensitivity than agarose gel electrophoresis due to more active redox centers in quercetin. The detection limit was attained at 101 copies µL-1 and 101 CFU mL-1 for SARS-CoV-2 RNA and E. faecium, respectively. A foldable microdevice made of two pieces of PMMA that fully integrates DNA extraction, amplification, and detection processes was fabricated to establish practical applicability. On one PMMA, DNA extraction was performed in a reaction chamber inserted with an FTA card, and then LAMP reagents were added for amplification. Silver nitrate was added to the reaction chamber after LAMP. On the other PMMA, quercetin-soaked paper discs loaded in the detection chamber were folded toward the reaction chamber for colorimetric detection. An intense brown color was produced within 5 min when heated at 65 °C. The introduced colorimetric assay, which is highly favorable for laboratory and on-site applications, could be a valuable alternative to conventional methods for detecting infectious diseases, given its unique principle, simplicity, and naked-eye detection.


Subject(s)
COVID-19 , Communicable Diseases , Metal Nanoparticles , Humans , Colorimetry/methods , Quercetin , Polymethyl Methacrylate , RNA, Viral , SARS-CoV-2 , Silver , DNA
8.
Nanomaterials (Basel) ; 13(7)2023 Apr 03.
Article in English | MEDLINE | ID: covidwho-2302546

ABSTRACT

Many articles have already been published dealing with silver ions and its nanoparticles, but mostly from the environmental and toxicological point of view. This article is a review focused on the various analytical techniques and detection platforms used in the separation and determination of mentioned above species, especially on the trace concentration level. Commonly used are optical methods because of their high sensitivity and easy automation. The separation methods are mainly used for the separation and preconcentration of silver particles. Their combination with other analytical techniques, mainly inductively coupled plasma mass spectrometry (ICP-MS) leads to very low detection limits of analysis. The electrochemical methods are also powerful and perspective mainly because of the fabrication of new sensors designed for silver determination. All methods may be combined with each other to achieve a synergistic improvement of analytical parameters with an impact on sensitivity, selectivity and reliability. The paper comprises a review of all three types of analytical methods on the determination of trace quantities of silver ions and its nanoparticles.

9.
Food Frontiers ; 4(1):325-332, 2023.
Article in English | ProQuest Central | ID: covidwho-2287772

ABSTRACT

Moving to 133 years of the synthesis of citrate-stabilized silver nanoparticles (AgNPs) by M. C. Lea (published in Am. J. Sci, 1889), a myriad of scholarly works and patents were published globally demonstrating the applicability of this microbial-killing nanoparticles in various industries. One of the favorite applications is on the food supply chain whereby AgNPs serve to improve food safety and quality. In this paper, the adaptation of AgNPs in each phase of a typical food supply chain is disclosed, doubts associated with the potential risks brought by this technology, and what a consumer shall be aware of are highlighted.

10.
Heliyon ; 9(3): e14419, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2286682

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has devastated mankind. To date, no approved treatment is available to completely combat this disease. Although many studies reported the potential of silver nanoparticles' (AgNPs) action mechanism and effect against SARS-CoV-2, this is the first clinical trial that aimed to prove this effect. This open-label, randomized, parallel-group, investigator-initiated study (IIS) was conducted in India from 2021 to 2022 and included 40 patients diagnosed with moderately-severe to severe COVID-19 pneumonia. This study proved a significantly higher survival rates (p < 0.05) and significantly lower number of days until supplemental oxygenation was required (p < 0.0001) for patients receiving intravenous AgNPs in form of AgSept® in addition to the standard COVID-19 treatment. This study highlights the importance of intravenous AgNPs administration in the treatment of virus-induced pneumonia.

11.
Appl Microbiol Biotechnol ; 107(2-3): 623-638, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2268536

ABSTRACT

COVID-19 patients have often required prolonged endotracheal intubation, increasing the risk of developing ventilator-associated pneumonia (VAP). A preventive strategy is proposed based on an endotracheal tube (ETT) modified by the in situ deposition of eucalyptus-mediated synthesized silver nanoparticles (AgNPs). The surfaces of the modified ETT were embedded with AgNPs of approximately 28 nm and presented a nanoscale roughness. Energy dispersive X-ray spectroscopy confirmed the presence of silver on and inside the coated ETT, which exhibited excellent antimicrobial activity against Gram-positive and Gram-negative bacteria, and fungi, including multidrug-resistant clinical isolates. Inhibition of planktonic growth and microbial adhesion ranged from 99 to 99.999% without cytotoxic effects on mammalian cells. Kinetic studies showed that microbial adhesion to the coated surface was inhibited within 2 h. Cell viability in biofilms supplemented with human tracheal mucus was reduced by up to 95%. In a porcine VAP model, the AgNPs-coated ETT prevented adhesion of Pseudomonas aeruginosa and completely inhibited bacterial invasion of lung tissue. The potential antimicrobial efficacy and safety of the coated ETT were established in a randomized control trial involving 47 veterinary patients. The microbial burden was significantly lower on the surface of the AgNPs-coated ETT than on the uncoated ETT (p < 0.05). KEY POINTS: • Endotracheal tube surfaces were modified by coating with green-synthesized AgNPs • P. aeruginosa burden of endotracheal tube and lung was reduced in a porcine model • Effective antimicrobial activity and safety was demonstrated in a clinical trial.


Subject(s)
Anti-Infective Agents , COVID-19 , Communicable Diseases , Metal Nanoparticles , Pneumonia, Ventilator-Associated , Humans , Animals , Swine , Anti-Bacterial Agents/pharmacology , Silver/pharmacology , Hospitals, Animal , Metal Nanoparticles/chemistry , Kinetics , Gram-Negative Bacteria , Gram-Positive Bacteria , Anti-Infective Agents/pharmacology , Pneumonia, Ventilator-Associated/prevention & control , Pneumonia, Ventilator-Associated/microbiology , Biofilms , Intubation, Intratracheal/methods , Mammals
12.
Waste Biomass Valorization ; : 1-10, 2023 Mar 23.
Article in English | MEDLINE | ID: covidwho-2267727

ABSTRACT

Air pollution and infectious diseases (such as the COVID-19 pandemic) have attracted considerable attention from governments and scientists worldwide to find the best solutions to address these issues. In this study, a new simultaneous antibacterial and particulate matter (PM) filtering Ag/graphene-integrated non-woven polypropylene textile was fabricated by simply immersing the textile into a Ag/graphene-containing solution. The Ag/graphene nanocomposite was prepared by reducing Ag ions on the surface of graphene nanoplatelets (GNPs) using the leaf extract. The prepared Ag/graphene textile was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Energy Dispersive X-ray (EDX), and contact angle measurements. The results showed excellent integration of the Ag/GNP nanocomposite into the non-woven polypropylene textile matrix. The prepared textile exhibited superhydrophobicity with a contact angle of 152°. The maximum PM removal percentage of the Ag/GNP-integrated textile was determined to be 98.5% at an Ag/GNP content of 1.5% w/w and a silicon adhesive of 1% w/w. The Ag/GNP textile exhibited high antibacterial activity toward Escherichia coli with no sign of bacteria on the surface. Remarkably, the as-prepared Ag/GNP textile was highly durable and stable and could be reused many times after washing.

13.
BMC Chem ; 17(1): 13, 2023 Mar 10.
Article in English | MEDLINE | ID: covidwho-2272483

ABSTRACT

Molnupiravir is the first oral direct-acting antiviral prodrug recently approved for the COVID-19 pandemic. Here and for the first time, we present a novel, sensitive, robust, and simple silver-nanoparticles spectrophotometric technique for molnupiravir analysis in its capsules and dissolution media. This spectrophotometric technique involved silver-nanoparticles synthesis through a redox reaction between the reducing agent (molnupiravir) and the oxidizing agent (silver nitrate) in presence of polyvinylpyrrolidone as a stabilizing agent. The produced silver-nanoparticles have an intense surface plasmon resonance peak at 416 nm where the measured absorbance values were utilized for the quantitative analysis of molnupiravir. The produced silver-nanoparticles were recognized by using the transmission electron microscope. Under optimal conditions, a good linear rapport was accomplished between molnupiravir concentrations and the corresponding absorbance values in a range of (100-2000) ng/mL with a detection limit of 30 ng/mL. Greenness assessment was implemented using eco-scale scoring and GAPI disclosing the excellent greenness of the suggested technique. The suggested silver-nanoparticles technique was authenticated according to recommendations of the ICH and statistically assessed with the reported liquid chromatographic method without significant differences regarding accuracy or precision. Accordingly, the suggested technique is deemed a green and cheap alternative for assaying molnupiravir due to its reliance primarily on water. Furthermore, the suggested technique's high sensitivity can be employed for investigating molnupiravir bioequivalence in future studies.

14.
BMC Chem ; 17(1): 20, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2280024

ABSTRACT

BACKGROUND: Daclatasvir dihydrochloride has important roles not only in the management of COVID-19 pandemic symptoms but also in the treatment of chronic hepatitis C infection. OBJECTIVE: The current research presents four novel and simple platforms including silver-nanoparticles spectrophotometric technique and three electrochemical conductometric ones for daclatasvir analysis in its tablet, biological fluids, and dissolution media. METHODS: The spectrophotometric platform involved the synthesis of silvernanoparticles through a redox reaction between the reducing agent (daclatasvir) and the oxidizing agent (silver nitrate) in presence of polyvinylpyrrolidone as a stabilizing agent. The produced silver-nanoparticles have an intense surface plasmon resonance peak at 421 nm where the measured absorbance values were utilized for quantitative spectrophotometric determination of daclatasvir. While the electrochemical conductometric platforms involved the reaction of daclatasvir with three different precipitating reagents (silver nitrate, phosphomolybdic acid, and ammonium reineckate) to form ion associates between these reagents and daclatasvir in the aqueous system. RESULTS: All proposed platforms were validated in line with recommendations of the international conference on harmonization producing satisfactory outcomes within the agreed boundaries. CONCLUSION: The proposed platforms are green alternatives for routine rapid assay of daclatasvir at the cheapest cost because their results were observed to be nearly similar to those of the reported platform. Moreover, the suggested spectrophotometric platform's sensitivity can be employed for investigating daclatasvir bioequivalence.

15.
Wiley Interdiscip Rev Nanomed Nanobiotechnol ; 14(5): e1823, 2022 09.
Article in English | MEDLINE | ID: covidwho-2266904

ABSTRACT

The COVID-19 pandemic has inspired large research investments from the global scientific community in the study of viral properties and antiviral technologies (e.g., self-cleaning surfaces, virucides, antiviral drugs, and vaccines). Emerging viruses are a constant threat due to the substantial variation in viral structures, limiting the potential for expanded broad-spectrum antiviral agent development, and the complexity of targeting multiple and diverse viral species with unique characteristics involving their virulence. Multiple, more infectious variants of SARS-CoV2 (e.g., Delta, Omicron) have already appeared, necessitating research into versatile, robust control strategies in response to the looming threat of future viruses. Nanotechnology and nanomaterials have played a vital role in addressing current viral threats, from mRNA-based vaccines to nanoparticle-based drugs and nanotechnology enhanced disinfection methods. Rapid progress in the field has prompted a review of the current literature primarily focused on nanotechnology-based virucides and antivirals. In this review, a brief description of antiviral drugs is provided first as background with most of the discussion focused on key design considerations for high-efficacy antiviral nanomaterials (e.g., nanopharmaceuticals) as determined from published studies as well as related modes of biological activity. Insights into potential future research directions are also provided with a section devoted specifically to the SARS-CoV2 virus. This article is categorized under: Toxicology and Regulatory Issues in Nanomediciney > Toxicology of Nanomaterials Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.


Subject(s)
COVID-19 Drug Treatment , Pandemics , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Pandemics/prevention & control , RNA, Viral , SARS-CoV-2
16.
Journal of Industrial Textiles ; 52, 2022.
Article in English | Scopus | ID: covidwho-2227307

ABSTRACT

During current COVID-19 crises, the antimicrobial textiles primarily those utilized in hospital by doctors and paramedical staff have become increasingly important. Thus, there is an unmet requirement to develop antimicrobial textiles for infection control and hygiene practices. Metallic nanoparticles exhibit great effectiveness towards resistant microbial species making them a potential solution to the increasing antibiotic resistance. Due to this, nanoparticles particularly copper and silver have become most prevalent forms of antibacterial finishing agents for the development of antimicrobial textiles. This review is mainly focused on the significance of copper and silver nanoparticles for the development of antimicrobial textiles. The comparative analysis of the antibacterial effectiveness of copper and silver nanoparticles as well as the possible physical and chemical interactions responsible for their antibacterial action are explained. The negative impact of pathogenic microbes on textiles and possible interactions of antimicrobial agents with microbes have also been highlighted. The significance of nanotechnology for the development of antimicrobial textiles and their applications in medical textiles domain have also been discussed. Various green synthesis and chemical methods used for the synthesis of Ag and Cu nanoparticles and their application on textile substrates to impart antimicrobial functionality have also been discussed. The various qualitative and quantitative standard testing protocols utilised for the antimicrobial characterization of textiles have also discussed in this review. The developed Cu and Ag coated textiles could be effectively applied in the field of hospital textiles for the preparation of antibacterial scrub suits, surgical gowns, panel covers, protective clothing, bedding textiles, coveralls, wound dressings, table covers, curtains, and chair covers etc. © The Author(s) 2022.

17.
Molecules ; 28(3)2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2225466

ABSTRACT

The present study aimed to estimate the antiviral activities of Ginkgo biloba (GB) leaves extract and eco-friendly free silver nanoparticles (Ag NPs) against the MERS-CoV (Middle East respiratory syndrome-coronavirus) and HCoV-229E (human coronavirus 229E), as well as isolation and identification of phytochemicals from GB. Different solvents and high-performance liquid chromatography (HPLC) were used to extract and identify flavonoids and phenolic compounds from GB leaves. The green, silver nanoparticle synthesis was synthesized from GB leaves aqueous extract and investigated for their possible effects as anti-coronaviruses MERS-CoV and HCoV-229E using MTT assay protocol. To verify the synthesis of Ag NPs, several techniques were employed, including X-ray diffraction (XRD), scan, transmission electron microscopy, FT-IR, and UV-visible spectroscopy. The highest contents of flavonoids and phenolic compounds were recorded for acetone, methanol, and ethanol as mixtures with water, in addition to pure water. HPLC flavonoids were detected as apegenin, luteolin, myricetin, and catechin, while HPLC phenolic compounds were pyrogallol, caffeic acid, gallic acid, and ellagic acid. In addition, our results revealed that Ag NPs were produced through the shift from yellow to dark brown. TEM examination of Ag NPs revealed spherical nanoparticles with mean sizes ranging from 5.46 to 19.40 nm and an average particle diameter of 11.81 nm. A UV-visible spectrophotometric investigation revealed an absorption peak at λ max of 441.56 nm. MTT protocol signified the use of GB leaves extract as an anti-coronavirus to be best from Ag NPs because GB extract had moderate anti-MERS-CoV with SI = 8.94, while had promising anti-HCov-229E, with an SI of 21.71. On the other hand, Ag NPs had a mild anti-MERS-CoV with SI = 4.23, and a moderate anti-HCoV-229E, with an SI of 7.51.


Subject(s)
Coronavirus 229E, Human , Coronavirus Infections , Metal Nanoparticles , Middle East Respiratory Syndrome Coronavirus , Humans , Ginkgo biloba , Metal Nanoparticles/chemistry , Silver/chemistry , Spectroscopy, Fourier Transform Infrared , Plant Extracts/pharmacology , Plant Extracts/chemistry , Coronavirus Infections/drug therapy , X-Ray Diffraction , Anti-Bacterial Agents/chemistry
18.
Life (Basel) ; 13(1)2022 Dec 26.
Article in English | MEDLINE | ID: covidwho-2216540

ABSTRACT

Impaired wound healing affects hundreds of million people around the world; therefore, chronic wounds are a major problem not only for the patient, but also for already overloaded healthcare systems. Chronic wounds are always very susceptible to infections. Billions of dollars are spent to discover new antibiotics as quickly as possible; however, bacterial resistance against antibiotics is rising even faster. For this reason, a complete shift of the antibacterial treatment paradigm is necessary. The development of technology has allowed us to rediscover well-known agents presenting antimicrobial properties with a better outcome. In this context, silver nanoparticles are a promising candidate for use in such therapy. Silver has many useful properties that can be used in the treatment of chronic wounds, such as anti-bacterial, anti-inflammatory, and anti-oxidative properties. In the form of nanoparticles, silver agents can work even more effectively and can be more easily incorporated into various dressings. Silver-based dressings are already commercially available; however, innovative combinations are still being discovered and very promising results have been described. In this review article, the authors focused on describing experimental and clinical studies exploring dressings containing either silver or silver nanoparticles, the results of which have been published in recent years.

19.
Oriental Journal of Chemistry ; 38(6):1328-1337, 2022.
Article in English | Web of Science | ID: covidwho-2203811

ABSTRACT

Contamination of surfaces has long been identified as a significant factor in viral transmission. Therefore, sustained efforts are required to address this issue. This work aims to build a scientific database on nano-sized metal oxides as intelligent materials for surface disinfection against corona viruses, synthesize and characterize nano-sized MgO, and discuss the possibility of using it in virus eradication. The MgO nanoparticle was prepared through the heating method. Meanwhile, XRD diffractometer, Scan electron microscope, and nitrogen adsorption were used to characterize the MgO nanoparticle. The synthesized MgO nanoparticle showed an average crystallite size of 18.55nm, lattice strain 0.0053, surface area 27.56 m(2)/g and d-spacing 2.1092. The outcomes of this review highlight the advantage and challenges of AgO, CuO, ZnO, TiO2 and MgO nanoparticles and their utilization for surface disinfection against coronaviruses.

20.
International Journal of Surface Science and Engineering ; 16(4):317-334, 2022.
Article in English | Web of Science | ID: covidwho-2162617

ABSTRACT

Global pandemic COVID-19 has affected almost the entire world population in every aspect of life in terms of health, environment, and economy. According to WHO, the main source of transmission of this deadly virus (SARS-CoV-2) is proven to be through the aerosol coming from the infected person's cough, sneeze, or exhalation. These aerosols are likely to settle down on the exposed surfaces and such infected surfaces are known to be potential source of contamination. The spread of the viral infections can be controlled in a great extent with the development of anti-viral nano-coating materials for various surfaces. Thus, development of such anti-viral nano-coating materials becomes increasingly popular amongst the researchers due to their extensive applications on surfaces, such as, glass, cotton, plastic and many more. In this short review, we will describe a summary of the popular metals and metal oxide nanomaterials commonly explored as antiviral coatings to control the spread of various viral disease along with the corresponding working principle and effectivity of such coatings.

SELECTION OF CITATIONS
SEARCH DETAIL